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Task: Write a Channel Access client

■ Many possible approaches and choices of language

■ Assuming that you need more than you can do with
● MEDM/EDM/CaQtDm/EpicsQt display manager

● CSS/Boy with its rules and scripts

■ These are commonly used options
● Shell or Perl script that calls the caget/caput/camonitor programs

● Python program with PyEpics or EPICS Cothread bindings

● Matlab/Octave/Scilab with MCA or LabCA bindings

● State Notation Language (SNL) program with the Sequencer

● Perl program with CA bindings

● C++ program with EPICS Qt bindings

● Java program calling CAJ (pure Java) or JCA (JNI)

● C/C++ program calling CA library



EPICS Control Systems — USPAS June 2014 — CA Client Programming

3

SNL programs speak CA natively

■ This piece of SNL handles all the connection management and data type handling:
● double value;

assign value to "fred";
monitor value;

■ Extend into a basic 'camonitor':
● evflag changed;

sync value changed;

ss monitor_pv
{

state check
{
    when (efTestAndClear(changed))
    {
        printf("Value is now %g\n", value);
    } state check
}

}
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Quick Hacks, Simple Scripts

■ In many cases, scripts written in bash/perl/python/php can just invoke the 
command-line ‘caget’ and ‘caput’ programs

■ Useful for reading/writing one or two PV values, not for subscribing to value updates

■ Quiz: Why would a loop that continually invokes ‘caget’ or ‘caput’ be bad?

■ CA Client library bindings are available for Perl, Python & PHP
● Perl bindings are included in EPICS Base (not available on MS Windows)

● Several different Python bindings are available

■ Much better to use these for long-running scripts
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Simple Script Example

#!/bin/env perl -w

# caget: Get the current value of a PV
# Argument: PV name
# Result: PV value
sub caget {
    my ($pv) = @_;
    open(my $F, "-|", "caget -t $pv") or die "Cannot run 'caget'\n";
    $result = <$F>;
    close $F;
    chomp $result;
    return $result;
}

# Do stuff with PVs
my $fred = caget("fred");
my $jane = caget("jane");
my $sum = $fred + $jane;
printf("Sum: %g\n", $sum);
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Channel Access for Python

 Two CA client bindings are currently recommended
– PyEpics: Matt Newville, CARS  & University of Chicago

– Cothread: Michael Abbott, Diamond

 Differences not huge, evaluate both?
– PyEpics provides a higher-level Device API, wxPython widgets, more extensive 

documentation

– Cothread provides a cooperative multi-threading library

 Websites for both bindings are linked from the EPICS Extensions page

 This section of lecture covers PyEpics
– Procedural interface (caget, caput, cainfo, camonitor)

– PV Objects API
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Procedural Interface: caget(), caput()

 Easy-to-use interface, similar to the basic 
command-line tools

>>> from epics import caget, caput

>>> m1 = caget(’XXX:m1.VAL’)
>>> print m1
-1.2001

>>> caput(’XXX:m1.VAL’, 0)

>>> caput(’XXX:m1.VAL’, 2.30, wait=True)

>>> print caget(’XXX:m1.DIR’)
1

>>> print caget(’XXX:m1.DIR’, as_string=True)
’Pos’

caput(pvname, wait=True) waits 
until processing completes. Also 
support a timeout option (wait no 
longer than specified time)

caget(pvname, as string=True) 
returns the String Representation of 
value (Enum State Name, formatted 
floating point numbers, . . . )

Many other options available that 
control exactly what these functions 
will do, see documentation
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Procedural Interface: cainfo(), camonitor()

 cainfo() also fetches status information and 
metadata for the channel:

>>> cainfo(’XXX.m1.VAL’)
== XXX:m1.VAL (double) ==
value      = 2.3
char_value = 2.3000
count      = 1
units      = mm
precision  = 4
host       = xxx.aps.anl.gov:5064
access     = read/write
status     = 1
severity   = 0
timestamp  = 1265996455.417 (2010-Feb-12 
11:40:55.417)
upper_ctrl_limit    = 200.0
lower_ctrl_limit    = -200.0
upper_disp_limit    = 200.0
lower_disp_limit    = -200.0
upper_alarm_limit   = 0.0
lower_alarm_limit   = 0.0
upper_warning_limit = 0.0
lower_warning       = 0.0
PV is monitored internally
no user callbacks defined.
=============================

 camonitor () monitors the PV, printing a 
message for every value change until 
camonitor_clear() is called:

>>> camonitor(’DMM:Ch2.VAL’)
DMM:Ch2.VAL 2010-02-12 12:12:59.502945 -183.9741
DMM:Ch2.VAL 2010-02-12 12:13:00.500758 -183.8320
DMM:Ch2.VAL 2010-02-12 12:13:01.501570 -183.9309
DMM:Ch2.VAL 2010-02-12 12:13:02.502382 -183.9285
...

>>> camonitor_clear(’XXX:DMM1Ch2_calc.VAL’)

 Can provide a callback function to change 
the formatting or do something other 
than print the value each time

 PVs are cached internally, so searches are 
not repeated for subsequent calls to 
these library routines
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PV Objects: Easy to use, rich features

>>> from epics import PV
>>> pv1 = PV(’XXX:m1.VAL’)
>>> print pv1.count, pv1.type
(1, ’double’)

>>> print pv1.get()
-2.3456700000000001

>>> pv1.put(2.0)

>>> pv1.value = 3.0   # = pv1.put(3.0)
>>> pv1.value         # = pv1.get()
3.0
>>> print pv.get(as_string=True)
’3.0000’

>>> # user defined callback
>>> def onChange(pvname=None, value=None, **kws):
...     fmt = ’New Value for %s value=%s\n’
...     print fmt % (pvname, str(value))

>>> # subscribe for changes
>>> pv1.add_callback(onChange)
>>> while True:
...     time.sleep(0.001)

 Automatic connection management

 Attributes for many properties 
(count, type, host, limits... etc)

 Use get() / put() methods or 
the .value attribute

 Use as_string=True argument for 
Enum labels or record-selected 
floating point display precision

 put() can wait for completion, or 
call a function when done

 Callback functions can be given to 
the PV() constructor for value and 
connection status changes

 Can have multiple value callback 
functions
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User-Supplied Callbacks for PV Changes

import epics
import time

def onChange(pvname=None, value=None,
              char_value=None, **kws):
    ’’’callback for PV value changes’’’
    print ’PV Changed! ’, pvname, \
          char_value, time.ctime()

mypv = epics.PV(pvname)

# Add the callback
mypv.add_callback(onChange)

print ’Now watch for changes for a minute’

t0 = time.time()
while time.time() - t0 < 60.0:
    time.sleep(1.e-3)

mypv.clear_callbacks()
print ’Done.’

 User-defined callback function must 
take keyword arguments, e.g.

 pvname Name of PV
 value New value
 char_value String representation of value
 count Element count
 ftype Field type (DBR integer)
 type Python data type
 status CA status, 1 = OK
 precision PV precision
 **kws Many more CTRL values for 

limits, units etc.

 User-defined put- and connection- 
callback functions must expect similar 
arguments
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Waveform / Array Data and Long Strings

 If numpy is installed it will be used; if 
not get() will return a Python list

>>> p1vals = numpy.linspace(3, 4, 101)

>>> scan_p1 = PV(’XXX:scan1.P1PA’)
>>> scan_p1.put(p1vals)

>>> print scan_p1.get()[:101]
[3. , 3.01, 3.02, ..., 3.99, 3.99, 4.]

 CA only carries strings up to 40 chars
 Arrays of characters must be used for 

longer strings. An as_string=True 
argument will convert ASCII data

>>> folder = PV(’XXX:directory’)
>>> print folder
<PV ’XXX:directory’, count=21/128,
        type=char, access=read/write>

>>> folder.get()
array([ 84, 58, 92, 120, 97, 115, 95, 117,
       115, 101, 114, 92, 77, 97, 114, 99,
       104, 50, 48, 49, 48])

>>> folder.get(as_string=True)
’T:\xas user\March2010’

>>> folder.put(’T:\xas user\April2010’)
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PyEpics Internal Design Choices

 The module hides many Channel Access details that most users won’t need
– Most of these settings can be changed if necessary

 It also provides a higher-level Device API (not covered here)
 Runs in libCa’s preemptive multi-threading mode, user code never has to call 

functions like ca_pend_event() or ca_pend_io()

 Sets EPICS_CA_MAX_ARRAY_BYTES to 16777216 (16Mb) unless already set
 Usually registers internal Connection and Event handlers. User-defined callback 

functions are then called by the internal handler
 Event Callbacks are used internally except for large arrays, as defined by 

ca.AUTOMONITOR_LENGTH (default = 16K)
 Event subscriptions use mask of (EVENT | LOG | ALARM) by default
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Channel Access for Perl, C and C++

 The Channel Access client library comes with EPICS base and is the basis for most of 
the other language bindings

– Internally written in C++ but API is pure C

– Main exception: Pure Java library ‘CAJ’

 Documentation:
– EPICS R3.14 Channel Access Reference Manual by Jeff Hill et al.

– CA - Perl 5 interface to EPICS Channel Access by Andrew Johnson

– In <base>/html, or from the EPICS web site

 This section covers
– Fundamental API concepts using Perl examples

– Some brief examples in C

– How to instantiate a template with some example C programs
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CA Client APIs for Perl, C and C++

 Why teach the Perl API before C?
– Higher level language than C, no pointers needed

– Learn the main principles and library calls with less code

– Complete Perl programs can fit on one slide

 The Perl 5 API is a thin wrapper around the C library
– Built with Base on most Unix-like workstation platforms (not Windows)

– Provides the same interface model that C code uses

– Unless you’re interfacing to specific libraries or need very high performance, Perl scripts 
may be sufficient for most tasks

 Other APIs like Python and Java are less like the C library
– Good for writing client programs in Python/Java, but not for learning the C library
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Search and Connect to a PV

use lib '/path/to/base/lib/perl';
use CA;

my $chan = CA->new($ARGV[0]);
CA->pend_io(1);

printf "PV: %s\n", $chan->name;
printf "  State:         %s\n", $chan->state;
printf "  Host:          %s\n", $chan->host_name;
my @access = ('no ', '');
printf "  Access rights: %sread, %swrite\n",
    $access[$chan->read_access], $access[$chan->write_access];
printf "  Data type:     %s\n", $chan->field_type;
printf "  Element count: %d\n", $chan->element_count;

 This is the basic cainfo program in Perl (without error checking)
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Get and Put a PV

use lib '/path/to/base/lib/perl';
use CA;

my $chan = CA->new($ARGV[0]);
CA->pend_io(1);

$chan->get;
CA->pend_io(1);
printf "Old Value: %s\n", $chan->value;

$chan->put($ARGV[1]);
CA->pend_io(1);

$chan->get;
CA->pend_io(1);
printf "New Value: %s\n", $chan->value;

 This is the basic caput program in Perl (without error checking)
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Monitor a PV

use lib '/path/to/base/lib/perl';
use CA;

my $chan = CA->new($ARGV[0]);
CA->pend_io(1);

$chan->create_subscription('v', \&val_callback);
CA->pend_event(0);

sub val_callback {
   my ($chan, $status, $data) = @_;
   if (!$status) {
       printf "PV: %s\n", $chan->name;
       printf "  Value: %s\n", $data;
   }
}

 This is a basic camonitor program in Perl (without error checking)
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Error Checking

 What happens if the PV search fails, e.g. the IOC isn't running, or it's busy and takes 
longer than 1 second to reply?

– CA->pend_io(1) times out

– CA library throws a Perl exception (die)

– Program exits after printing:
• ECA_TIMEOUT - User specified timeout on IO operation expired at test.pl line 5.

 We can trap the Perl exception using
– eval {CA->pend_io(1)};

if ($@ =~ m/^ECA_TIMEOUT/) { ... }

 How can we write code that can recover from failed searches and continue doing 
useful work?
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Event-driven Programming

 First seen when setting up the CA monitor:
– $chan->create_subscription('v', \&callback);

CA->pend_event(0);

– The CA library executes our callback subroutine whenever the server provides a new data 
value for this channel

– The CA->pend_event() routine must be running for the library to execute callback 
routines

• The Perl CA library is single threaded

• Multi-threaded C programs can avoid this requirement

 Most CA functionality can be event-driven
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Event-driven PV Search and Connect

use lib '/path/to/base/lib/perl';
use CA;

my @chans = map {CA->new($_, \&conn_callback)} @ARGV;
CA->pend_event(0);

sub conn_callback {
    my ($chan, $up) = @_;
    printf "PV: %s\n", $chan->name;
    printf "  State:         %s\n", $chan->state;
    printf "  Host:          %s\n", $chan->host_name;
    my @access = ('no ', '');
    printf "  Access rights: %sread, %swrite\n",
        $access[$chan->read_access], $access[$chan->write_access];
    printf "  Data type:     %s\n", $chan->field_type;
    printf "  Element count: %d\n", $chan->element_count;
}

 The cainfo program using callbacks
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Event-driven PV Monitor

use lib '/path/to/base/lib/perl';
use CA;

my @chans = map {CA->new($_, \&conn_cb)} @ARGV;
CA->pend_event(0);

sub conn_cb {
    my ($ch, $up) = @_;
    if ($up && ! $monitor{$ch}) {
        $monitor{$ch} = $ch->create_subscription('v', \&val_cb);
    }
}

sub val_cb {
   my ($ch, $status, $data) = @_;
   if (!$status) {
       printf "PV: %s\n", $ch->name;
       printf "  Value: %s\n", $data;
   }
}

 The camonitor program using callbacks
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Data Type Requests

 Most data I/O routines handle data type automatically
– $chan->get fetches one element in the channel’s native type

• Value is returned by $chan->value

• Arrays are not supported, no type request possible

– $chan->get_callback(SUB) fetches all elements in the channel’s native data type
• Optional TYPE and COUNT arguments to override

– $chan->create_subscription(MASK, SUB) requests all elements in the channel’s 
native type

• Optional TYPE and COUNT arguments to override

– $chan->put(VALUE) puts values in the channel’s native type
• VALUE may be a scalar or an array

– $chan->put_callback(SUB, VALUE) puts values in the channel’s native data type
• VALUE may be a scalar or an array
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Specifying Data Types

 The TYPE argument is a string naming the desired DBR_xxx type
– See the CA Reference Manual for a list

 The COUNT argument is the integer number of elements

 If you request an array, the callback subroutine’s $data argument becomes an array 
reference

 If you request a composite type, the callback subroutine’s $data argument 
becomes a hash reference

– The hash elements are different according to the type you request

– See the Perl Library documentation for details
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Simple Channel Access calls from C

 Main header file
– #include <cadef.h>

– This also includes db_access.h, caerr.h and caeventmask.h

 Channels are referred to using as a chid, a pointer to an opaque structure
– chid fred;

 Connect to a channel
– int status = ca_create_channel("fred", NULL, NULL, 0, &fred);

SEVCHK(status, "Create channel failed");
status = ca_pend_io(1.0);
SEVCHK(status, "Channel connection failed")

 The SEVCHK(status, text) macro is useful for simple programs
– Aborts with an error message on bad status
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What’s in a chid?

 We can get channel information from a connected chid
– const char *ca_state_to_text[4] = {"Never connected",

    "Not connected", "Connected", "Closed"};

printf("PV: %s\n", ca_name(fred));
printf("State: %s\n", ca_state_to_text[ca_state(fred)]);
printf("Host:  %s\n", ca_host_name(fred));
printf("Read:  %s\n", ca_read_access(fred) ? "Y" : "N");
printf("Write: %s\n", ca_write_access(fred) ? "Y" : "N");
printf("Type:  %s\n", dbr_type_to_text(ca_field_type(fred)));
printf("Count: %s\n", ca_element_count(fred));

 Tidy up after we’re finished with fred
– SEVCHK(ca_clear_channel(fred), "Clear channel failed");
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Writing to a PV

 Assuming the chid fred is already/still connected
– SEVCHK(ca_put(DBR_STRING, fred, "10"), "Put failed");

ca_flush_io();

 If fred’s PV can hold an array of doubles
– dbr_double_t data[] = {1.0, 2.0, 3.0, 4.0, 5.0};

SEVCHK(ca_array_put(DBR_DOUBLE, 5, fred, data), "Put failed");
ca_flush_io();

 What other data types are available?
– See the db_access.h file in Base/include
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Reading from a PV

 Still assuming fred is connected
– struct dbr_time_double val;

const char * severity_to_text[4] = {
    "No alarm", "Minor", "Major", "Invalid"};

SEVCHK(ca_get(DBR_TIME_DOUBLE, fred, &val), "Get failed");
SEVCHK(ca_pend_io(1.0), "I/O failed");
printf("PV: %s\n", ca_name(fred));
printf("value:    %g\n", val.value);
printf("severity: %s\n", severity_to_text[val.severity]);
printf("status:   %hd\n", val.status);
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Base caClient template

 EPICS Base Includes a makeBaseApp.pl template that builds two basic CA client 
programs written in C:

– Run this
makeBaseApp.pl -t caClient cacApp
make

– Result
bin/linux-x86/caExample <some PV>
bin/linux-x86/caMonitor <file with PV list>

– Then read the sources, compare with the reference manual, and edit/extend to suit your 
needs
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CaClient's caExample.c

 Minimal CA client program
 Fixed timeout, waits until data arrives
 Requests everything as ‘DBR_DOUBLE’

– … which results in values of type ‘double’

– See db_access.h header file for all the DBR_… constants and the resulting C types and 
structures

– In addition to the basic DBR_type requests, it is possible to request packaged attributes 
like DBR_CTRL_type to get { value, units, limits, …} in one request
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Excerpt from db_access.h

/* values returned for each field type
 …
 *      DBR_DOUBLE      returns a double precision floating point number
 …
 *      DBR_CTRL_DOUBLE returns a control double structure (dbr_ctrl_double)
 */

…

/* structure for a control double field */
struct dbr_ctrl_double{
        dbr_short_t     status;                 /* status of value */
        dbr_short_t     severity;               /* severity of alarm */
        dbr_short_t     precision;              /* number of decimal places */
        dbr_short_t     RISC_pad0;              /* RISC alignment */
        char            units[MAX_UNITS_SIZE];  /* units of value */
        dbr_double_t    upper_disp_limit;       /* upper limit of graph */
        dbr_double_t    lower_disp_limit;       /* lower limit of graph */
        dbr_double_t    upper_alarm_limit;
        dbr_double_t    upper_warning_limit;
        dbr_double_t    lower_warning_limit;
        dbr_double_t    lower_alarm_limit;
        dbr_double_t    upper_ctrl_limit;       /* upper control limit */
        dbr_double_t    lower_ctrl_limit;       /* lower control limit */
        dbr_double_t    value;                  /* current value */
};
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caClient's caMonitor.c

 Better CA client program
– Registers callbacks to get notified when connected or disconnected

– Subscribes to value updates instead of waiting

– … but still uses one data type (DBR_STRING) for everything
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Java

■ There are 2 CA implementations for Java: JCA using JNI, or CAJ in pure Java
● Only difference is the initialization, both provide the same API

● Usage is similar to the Perl interface, object-oriented “real programming” as opposed to 
Matlab, but in the more forgiving Java VM

■ A Java CA example can be found at
● http://ics-web.sns.ornl.gov/kasemir/train_2006/4_2_Java_CA.tgz

http://ics-web.sns.ornl.gov/kasemir/train_2006/4_2_Java_CA.tgz
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Ideal CA client?

■ Register and use callbacks for everything
● Event-driven programming; polling loops or fixed time outs

■ On connection, check the channel’s native type
● Limit the data type conversion burden on the IOC

■ Request the matching DBR_CTRL_type once
● this gets the full channel detail (units, limits, …)

■ Then subscribe to DBR_TIME_type for time+status+value updates
● Now we always stay informed, yet limit the network traffic

● Only subscribe once at first connection; the CA library automatically re-activates 
subscriptions after a disconnect/reconnect

■ This is what CSS, EDM, ALH etc. do
● Quirk: Most don't learn about run-time changes of limits, units, etc.

□ Recent versions of CA support DBE_PROPERTY monitor event type

□ This will solve that issue, once the programs and gateway use it
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